

Drilling

Evaluation

Completion

Production

Intervention

OmniWell™ Production & Reservoir Monitoring

Julio Bello Regional Product Line Manager (Reservoir Monitoring)

May 2015

- Real time reservoir monitoring.
- OmniWell ™ System LxATS subsurface monitoring
 - LxATS slimline instrumentation capillary with Fiber Bragg grating (FBG) / ATS temperature and pressure real-time monitoring
 - RMS Surface data acquisition system
 - Reliability / Hydrogen darkening
 - LxATS installation methods
- Field data of real-time monitoring of SAGD in circulation & SAGD production mode
 - Efficiency metrics SOR / cSOR , local Subcool & steam chamber growth
 - Real-time, accurate and trustworthy thermal profiles
 - Manage stimulation processes in production mode
 - Lower Operational Cost and increase Production Rate
- Questions

OmniWell[™] Family

OmniWell™ Production Optimization Solution

Field Systems

- Multiphase Flow Meters
- Monitor Water Cut
- Downhole Sensors
- Controllers
- Artificial Lift Systems

Real-Time Data Collection

- Automation & Control
- R-T Data Store
- Scorecard
- Decision Support

Engineering Analysis

- WellFlo
- PanSystem
- ReO
- ReOForecast
- PLATO

OmniWell Integrated Optical Sensing System

Applications Experience

- Complete production and reservoir permanent monitoring solutions
 - Artificial lift.
 - Coal bed methane / coal seam gas.
 - Gas storage.
 - High temperature and pressure.
 - Heavy oil / thermal recovery.
 - Intelligent wells.
 - Sand face monitoring.
 - Shale / multi-stage fracturing.
 - Subsea.

OmniWell™ Technology

Electronic sensing systems

- Pressure, temperature and vibration sensing.
- Up to 392° F (200° C) and 25,000 psi (1,724 bar).
- Over 5500 gauges installed worldwide.

Optical sensing

- Pressure/temperature gauges Cane & LxPT.
- Distributed temperature & Multi-point temperature arrays – DTS, DTS+, ATS * LxATS.
- The pressure & temperature sensors operating environments include 572° F (300° C) and 30,000 (2,068 bar).
- Full bore downhole multiphase flowmeter.
- Multi-component in-well seismic.

OmniWell The Case for Fiber Optic Sensors

- High Reliability
 - No Downhole Electronics
 - No Moving Parts
 - Minimal Part Count
- Ideally Suited For Harsh Environments
 - High Temperature Capability
 - Vibration and Shock Tolerant
- High Data Transmission Capability
 - Multiple Sensors on Common Fiber Infrastructure
 - Technological Advances Driven by Telecom
- Distributed Sensing
 - Sensing Over the Entire Length of the Fiber

OminWell Integrated Monitoring Approach

OmniWell™ Production & Reservoir Technology

Optical Sensing Technology Configurations

Each optical fiber can support a variety of monitoring combinations to meet application requirements

P/T = Pressure/Temperature; ATS = Array Temperature Sensor, LxPT/ LxT = FBG; DTS = Distributed Temperature Sensor

Optical Sensing Evolution - Weatherford

WORLD-FIRST DOWNHOLE FIBER OPTIC INSTALLATIONS:

	WORLD-FIRST DOWNHOLE FIBI
1993	First In-well Optical P/T Gauge
1996	First Subsea Optical P/T Gauge
1999	First In-well Bragg Grating P/T Gauge
1999	First In-well Fiber Optic Seismic Accelerometer
2000	First Non-intrusive In-well Fiber Optic Flowmeter
2001	Optical P/T Gauge and DTS in Single Completion
2002	Multiple Optical P/T Gauges in Single Completion
2003	Full 3-phase Fiber Optic Flowmeter with P/T Gauges
2003	Multi-zone Optical P/T Gauges and Remote Flow Control
2004	Multi-zone Optical P/T Gauges and Flowmeters with Remote Flow Control
2004	Casing-conveyed, Multi-station, Seismic with P/T Gauge
2005	Multiple Optical P/T Gauges and DTS Integrated with Sand Control
2006	First Offshore Permanent Seismic Arrays interfaced to OBS Systems
2007	First SAGD LxATS Injector / Producer slimline CT deployed
2008	First Subsea Optical system for Array Temperature Sensing
2009	First LxPT installed intake pressure ESP SAGD & at Toe
2010	First combined ATS + DTS system for Sandface Monitoring

First combined offshore flowmeters, P/T and Distributed Acoustic Sensing (DAS – 3rd party) monitoring.

2012 First offshore DAS (3rd party) concurrent multi-well seismic survey (Weatherford cable)

2013 First DTS, LxATS, CanePT, PDAS Thermal well s

2011

LxATS – High Density Array Temperature Sensing

Experiences monitoring in thermal Oil fields

LxATS Ultra High temp P/T sensing

LXATS & LXPT

- FBG Sensors at 300° C & 1,200 psi (8,500 kPa)
- Accurate sensing suitable for extreme High Temp
- No calibration fiber from Hydrogen
- Reliable & permanent string, > 10 years lifetime
- Multi-functional P,T in real time
- Varied monitoring spatial resolution along well
- Survives shut-ins / Thermal expansion
- **Production Automation**
- Detailed thermal analysis studies

Mechanical Properties Gauge			
Gauge Outside Diameter (in/mm)	0.25 (6.35)		
Gauge Length (in/mm)	3.875 (98.4)		
	1/4-in Cable (Inc 825)		
Mechanical Properties Cable	0.028-in wall	0.035-in wall	
Weight in air (lb/ft)	0.1	0.11	
Collapse pressure (psi/bar)	>30,000 (2,068)	>35,000 (2,413)	
Burst pressure (psi/bar)	20,000 (1,379)	25,000 (1,724)	
Maximum tensile load (lb/kg)	1,500 (680)	2,000 (907)	

LxATS Ultra High Temperature Monitoring

- Highest reliability and accuracy with real time sub-surface monitoring
 - First system installed Nov 2007 continuous operation in Injector
- Distributed multi-point Temperature and Pressure optical sensors
- Field proven optimization of SAGD and Steam flood recovery, reducing the operational costs & environmental footprint.
 - PID Control increases production rate by 29% lowers steam cost by 20%.

More than 300 High Temperature/Pressure operating in Injector, Producer, infill and Observation wells (Q1 2015 – temperature range 220 – 300 C)

LxATS Systems with PID Control

✓ Production Increase 29%

- **Local Sub-cool measurements**
- **Steam Breakthrough**
- Flow obstruction and thief zones
- Measure and improve conformance
- Performance of gas lift valve & ESP
- Validate reservoir models & lifetime
- Injection & production rates, pressures

Results: Cumulative Oil Production

29% Increase in Oil Production

Improved Control of Steam = More Mobilized Oil

OmniWell™ Production & Reservoir Monitoring

Monitoring Experiences with thermal HO fields in Canada

- Nexen Pilot LxATS installed Injector well November 2007
- Alberta Oilsands Monitoring Experiences
- LXPT optical pressure temperature gauge installed in 2009
- LxPT monitor intake pressure at ESP

Permanent Monitoring of High Viscosity SAGD Wells in Alberta Canada

- Experiences in monitoring highviscosity oil fields Canada
- Nexen Pilot installed Injector well November 2007
- Optimize the Circulation Phase of SAGD Wells in Canada
- Optimize Production Phase of SAGD Wells in Canada

Sensors 7200

of Cables 171

Longest/mths 80

String Yrs 375.7

Max Depth 1960 meters

Max Temp 282° C

Monitoring Experiences with thermal HO fields in MENA

Oman:

- Qarn Alam WFT UHT PT gauges installed (June 2012) Well under steam and Tmax = 230C
- Qarn Alam WFT UHT PT gauges installed in (November 2013)
- Amal west WFT UHT-DTS and LxATS installed in 7 wells (2014)
- Amal west WFT UHT-DTS and LxATS to be installed in another 8 wells in 2015

Real Time Reservoir Monitoring Thermal wells

Towards "Best Practices"

- Subcool measurements
- Steam Breakthrough & improve safety
- Flow obstruction and thief zones
- Tubing or casing leaks
- Reduce probability of sand production
- Reduce severity or impact of problem wells
- Completion effectiveness
- Measure and improve conformance
- Optimize surface operations duration and costs
- Optimize production & injection rates
- Performance of gas lift valve
- Validate reservoir models & reserve lifetime
- Highest and most economical recovery
- Injection & production profiles, rates, pressure

Results: Cumulative Steam-to-Oil Ratio

20% Reduction in cSOR

Means 20% reduction in GHG Emissions

Main knob (Viscosity vs. Temperature)

Commercial In-Situ Recovery Process

Steam-Assisted Gravity Drainage

Chambers are Heterogeneous

Monitored Data & Results

July 2012 using the WellVista™ real time software

- WellVista™ software enables processing of operational steam injection rates, surface pressures, pump variables and controls & subsurface pressures and temperature profiles
- Data from July 2012 shows local subcool at the 650 meter section as low as 15°C and Instances when it drops to 10 °C

- Adjustments in temperature, pressure and rate of injected steam will have a delayed impact on the production rate due to the pre existing steam chamber
- Lifting rate has a more direct impact on the ∆ T's along the horizontal

Weatherford®

Thank you & Questions

Drilling

Evaluation

Completion

Production

Intervention