All Around You Weatherford's Integrated Laboratory Services (ILS) effectively combines the experience and expertise of leaders in the oil and gas service industry by integrating their considerable abilities under one roof. # Global Experience in 50+ Countries #### **Agenda For The Session** - EOR and Services Overview - Cost Effective data collection - Gas Injection - Chemical Flood - Thermal EOR - Discussion #### Cost effective data collection - Phase data acquisition through the life of the field - Objectives of data acquisitions should go through a detailed justification exercise - Investigate EOR at early stages of production (EOR floods can take place at the end of Water -Oil Relative permeability tests) - Preserve Material for future analysis - Proper geological description can optimize the samples analyzed - It is sometimes more effective to perform EOR when water cuts are low # **EOR Techniques** | Properties | N2 & Flue
Gas | Hydrocarbon | CO2 | Immiscible
Gas | Miscellar/polymer
ASP, & Alkaline
Flooding | Polymer
Flooding | Combustion | Steam | |-------------------------|---------------------------|---------------------------|---------------------------|-------------------------|--|---------------------------|---------------------------|----------------------------| | Oil API Gravity | > 35
Average 48 | > 23
Average 41 | > 22
Average 36 | >12 | > 20 Average
35 | > 15, < 40 | > 10 Average
16 | > 8 - 13.5
Average 13.5 | | Oil Viscosity (cp) | < 0.4
Average 0.2 | < 3
Average 0.5 | < 10
Average 1.5 | < 600 | < 35 Average 48 | > 10, < 150 | < 5000 Average
1200 | < 200000
Average 4700 | | Composition | High % C1–
C7 | High % C2–
C7 | High % C5–
C12 | Not Critical | Light intermediate. Some organic acids for alkaline floods | Not Critical | Some asphaltic components | Not Critical | | Oil Saturation
(%PV) | > 40
Average 75 | > 30
Average 80 | > 20
Average 55 | > 35
Average 70 | > 35
Average 53 | > 70
Average 80 | > 50 Average 72 | > 40 Average
66 | | Formation Type | Sandstone or
Carbonate | Sandstone or
Carbonate | Sandstone or
Carbonate | Not Critical | Sandstone
preferred | Sandstone preferred | High porosity sandstone | High porosity sandstone | | Net Thickness | Thin unless
dipping | Thin unless
dipping | Wide range | Not critical if dipping | Not critical | Not critical | > 3 meters | > 6 meters | | Average Perm. (mD) | Not critical | Not critical | Not critical | Not critical | > 10 mD Average
450 mD | > 10 mD
Average 800 mD | > 50 mD | > 200 mD | | Depth (m) | > 2000 | > 1200 | > 800 | > 600 | < 3000 Average
1000 | < 3000 | < 3800
Average 1200 | < 1500 | | Temperature (°C) | Not critical | Not critical | Not critical | Not critical | < 100 | < 100 | > 50 | Not critical | Table based on the 1996 Society of Petroleum Engineers Paper entitled "EOR Screening Criteria Revisited" by Taber, Martin, and Seright. #### **EOR Services in demand today** - Gas Injection - Sor recovery & CO₂ sequestration, - Incremental oil recovery by gas - Thermal - Heavy oil recovery, cap rock integrity - Chemical Flood A,S&P - Heavy oil to light oil plays, #### **Service Overview** - Laboratory - Reservoir Rock Properties - OOIP, OGIP, Productivity, Damage - Reservoir Fluid Properties - P, Bo, Rs, Viscosity, Solids - EOR, fluids & core floods - Gas, Steam, Chemical - Physical - Screens, Packers, Scaling, - Formation damage (tight rock) - Consulting - planning the study, - managing the study while it is in the lab and - applying the lab results to operator operations #### **Six Parameters That Control EOR** - Phase Behavior - Interfacial tension (IFT) - Viscosity ratio's - Pore throat size distribution - Wettability - Gravity ## **Fluid Phase Behavior** #### **Interfacial Tension IFT** MISCIBILITY STUDY 3RD CONTACT REVERSE @ 5700 psia (39.30 MPa) & 178 F (354.2 K) WITH SOUR GAS (13 % H2S) MISCIBILITY STUDY 3RD CONTACT FORWARD @ 5700 psia (39.30 MPa) & 178 F (354.2 K) WITH SOUR GAS (13 % H2S) 0.18 0.16 0.14 0.12 0.10 0.08 0.06 0.04 0.02 -0.06 -0.04 0.00 0.02 0.04 0.06 0.08 0.10 Distance (cm) Measured Calculated IFT = 1.065 dyne/cm IFT = 0.442 dyne/cm #### **Pore Throat Size Distribution** # Wettability # H₂S Capability – Yes We Can! LABORATORIES ## **Fluid & Rock Characterization** # **Gas Injection** #### **Enhanced Oil Recovery - Fluids** - Rising Bubble (RBA) - Slim Tubes for MMP, MME - 60 foot X ¼ " sand packed tube - Gas displacing oil -> idea of miscibility - Swelling Study for MMP, MMW - Mixes (5) of oil + solvent - See effect on Ps & physical properties - Multi contact Experiment, >> MMP, MME - Sequential mixing of oil & solvent - Equilibrium phases re-contacted - IFT, K values, Comps, and more ## **PVT Lab – Large capability** 7 PVT stations in this lab And 3 more in the isolation lab Slim tube being run in the Isolation lab (H2S/CO2 Injection gas mix) # **EOR Rigs** Slim Tube PVT Cell Swelling Or Multi contact #### **Slim Tube Plot - MMP** #### Swelling Test – P-X - Incrementally (5 steps) add solvent to live oil & measure bubble point / dew point, swelling & composition of the upper & lower phases. - Graph shows a "pass" ie bubble points of all mixes are < Pr; all oil gas mixes are single phase at P < Pr. #### **Multi - Contact** #### Multi – Contact test - 6 equilibrium points - 3 forward contacts & 3 reverse - Viscosity of lower phase at highest and lowest IFT contact - K values at each contact - IFT at the highest & lowest stages - GOR, Density and Bo of the contacted stages - Closely models the near well bore region (reverse contact) and deep in the reservoir (forward contact) #### **EOR Core Floods** # Using multi-contracted phases in core floods = unique service Increasing Pore Throat Aperture Figure 7 IFT Dominated Reservoir Overlay the high And low IFT curves To indicate reservoir Sensitivity to miscibility Figure 8 Mobility Dominated Reservoir LABORATORIES #### **Results from fluids EOR tests** - Basic live oil properties - Determine Minimum Miscibility Pressure - Determine Minimum Miscibility Composition - Fine tune injection solvent to get leanest composition that fits into given pressure or least cost #### **Gas Injection - Conclusions** - Understanding fluid phase behavior is critical to predicting the success of the EOR plan - MMC & MMP - Vaporizing vs Condensing drives - The solvent composition may be tuned to optimize the flood - Can run the RBA as a predictor of miscibility, run 1 slims rather than 4, run the swelling test & run the MC for saving time and \$ - After the fluid properties have been defined, run core floods. Though fluids properties may indicate miscibility, Sor may still not be recovered – think heavy oil core + toluene -> takes forever to clean it though 100% miscible - Gravity effects, pore micro & macro features, wettability & saturation will significantly control the Sor recovery. # **Calgary EOR Capability** Non thermal core studies Steam floods, 7 stations # **Core Testing Rig – Steam Floods** ### Miscibility? - Is miscibility always necessary for successful oil recovery - Why are some reservoirs not sensitive to (low) interfacial tension & residual oil recovery? - Why do some reservoirs allow high residual oil recovery with high interfacial tension injectants? - How can you tell? # **Chemical Flooding - ASP** - 1. Selection of potential reagents including A,S &P - 2. Screen on basis of rock, clays, salinity, phase behavior - 3. Confirm IFT, adsorption, viscosity - 4. Run core floods, axial and radial - 5. Simulate for optimal slug size ## Higher adsorption with increasing salinity #### **Adsorption vs Salinity** #### **Radial and Axial Core Floods** # **Chemical Flooding** # For a Reservoir Dominated by Mobility # For a Reservoir Dominated by IFT Gas Saturation - Fraction # **Sweet/Smart (Low Salinity) Water Flooding** Mechanisms of Low Salinity Water Flood - 1. Ionic Exchange/adsorption of polar components from crude oil - 2. IFT Reduction results from pH change - 3. Wettability alteration - 4. Alteration of Zeta potential ## **Sweet/Smart (Low Salinity) Water Flooding** # **Thermal Recovery Schemes** - Steam flood design including shale barriers - Cyclic Steam (CCS) - Steam Assisted Gravity Drainage (SAGD) - Solvent Assisted SAGD - Chemically Assisted SAGD - Design of slot parameters (straight cut, key hole, rolled top, aperture) can not easily be predicted - Fire Flood # **Steam Injection into the Formation** ### **Laboratory Core Flood Scenario** #### The classical multi-temp water-steam flood test: - 1.Flood core at minimum mobilization temperature (~80 °C). - 2.Flood core at several increasing temperatures up to 240 °C. - 3.Flood core with saturated steam at 240 °C. - 4. Optional floods at the end with fresh water to evaluate potential clay sensitivity to the injection process. Warm Water ### **Thermal/Steam Effects** Figure 1 – Typical Steamflood Test Profile, No Damage effects Figure 2 – Typical Steamflood Test Profile, Damage Effects #### **Solvent in Steam** ### **Steamflood Testing Lab** - Dynamic (relative permeability) test fresh, frozen core - Reactor test not a sand pack LABORATORIES #### **Steam Chamber** Laboratory Simulation of Steam Chamber ### Steam Chamber - Well Pair ## Aquathermolysis Test Apparatus ## **SAGD Pilot** #### **Screens & Slotted Liners** OXY OMAN MUKHAIZNA SAND CONTROL STUDY PARAMETRIC SAND CONTROL STUDIES - 'FINE' GRAINED SAND 0.020" x 0.028" SC BASE SLOT | RATE | AVG PACK | AVG TOP | AVG BOT | PRODUCED | |-----------------|----------|---------|---------|----------| | O.W.G. | DELTA P | SLOT | SLOT DP | SAND | | CC/HR | PSI | DP PSI | PSI | GRAMS | | 40, 0, 0 | 0.38 | 0.05 | 0.03 | 0.00 | | 80, 0, 0 | 0.75 | 0.32 | 0.13 | 0.00 | | 120, 0, 0 | 0.99 | 0.38 | 0.18 | 0.00 | | 160, 0, 0 | 1.39 | 0.37 | 0.18 | 0.01 | | 160, 80, 0 | 3.65 | 0.49 | 0.18 | 0.01 | | 160, 160, 0 | 4.97 | 0.68 | 0.19 | 0.01 | | 160, 240, 0 | 6.72 | 0.83 | 0.17 | 0 | | 160, 320, 0 | 7.62 | 0.97 | 0.18 | 0.02 | | 160, 320, 10000 | 14.67 | 1.61 | 0.33 | 0.02 | | 160, 320, 20000 | 20.64 | 2.00 | 0.20 | 0.01 | | 160, 320, 30000 | 29.46 | 2.30 | 0.20 | 0.01 | | 160, 0 , 0 | 1.98 | 0.39 | 0.09 | 0 | | | | | | | ## Recap What kind of gas to inject What's the OOIP / OGIP When will water break through What's left behind What's the water cut Damage & prevention Will Steam work Will chemical flooding work How fast can we produce it ### **Enhanced Oil Recovery Flowchart** #### What this means for You ... #### Opportunity - What to do with existing pools - CO₂ sequestration - Heavy oil being considered - Tight formations #### Weatherford Labs fit - Increase efficiency & effectiveness of recovery of current pools - EOR potential - Steam flood potential - Damage / optimization ## **Understand & Apply Results** # Any questions or comments?